
The Development of Quantifiers
The Indexical, Symbolic, Iconic

Outline

Three major transitions in Peirce’s development of the quantification

theory are identified: the indexical, which presupposed a substitutional

interpretation, the symbolic (objectual/game-theoretic interpretation),

and the iconic (diagrammatic/continuity) interpretation. These

interpretations establish the senses in which Peirce meant logic to be the

science of semeiotic.

1. The development of quantifiers
2. The indexical, symbolic and iconic transitions
3. Substitutional vs. objectual interpretations.

Peirce’s theory of signs, or semeiotic, misunderstood by so many,
has gotten in amongst the wrong crowd. It has been taken up by an
interdisciplinary army of ‘semioticians’ whose views and aims are
antithetical to Peirce’s own, and meanwhile it has been shunned by
those philosophers who are working in Peirce’s own spirit on the
very problems to which his semeiotic was addressed. (Tom Short)
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The Algebraic Tradition

George Boole’s (1815–1864) algebra (Boolean algebra) in 1847
consisted of the operations of

◮ Product (intersection) “,” (x , y)

◮ Sum (union) “+” (x + y)

◮ Complementation “c” (xc )

Augustus De Morgan (1806–1871) suggested to consider
(two-place) relations in logic, and took Boolean algebra to form
the basis for logical operations.
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The Early Calculus of Relations (1867)

Peirce followed suit and regarded Boolean algebra as a
propositional calculus:

◮ Product x , y is regarded as a conjunction

◮ Sum x + y is regarded as an inclusive disjunction

◮ Complementation xc is regarded as a negation.

He took two-place relations to be sets of ordered pairs (a, b)
(“dyads”), three-place relations sets of ordered triples (a, b, c)
(“triads”), and relations generally as sets of ordered n-tuples of
singular objects.
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An extension of Boole’s logic to operations on relations:
1. The relative terms being a lover of (L) and being a benefactor of

(B) give rise to a product

L,B (is a lover and a benefactor of) (1)

just in case there is an ordered pair (a, b) of objects a and b
standing in both of the relations L and B.

2. a lover of (L) and a benefactor of (B) give rise to a sum

L + B (is a lover or a benefactor of) (2)

just in case there is an ordered pair (a, b) standing in one or both of
the relations L and B.

3. a lover of (L) has a complementation

Lc (is not a lover of) (3)

just in case there is (a, b) which does not stand in the relation L. . .
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The Logic of Relatives (1870)

The additional signs are the relative products and sums:

1. Concatenation of two relative terms L and B gives rise to a relative
product:

LB (is a lover of a benefactor of) (4)

just in case there is an ordered pair (a, b) standing in the relation in
which a is a lover of some c and c is a benefactor of b (that is, the
first object a is a lover of a benefactor of the second object b).

2. (1883) Relation between L and B gives rise to a relative sum:

L † B (is a lover of every benefactor of) (5)

just in case there is an ordered pair (a, b) standing in the relation in
which a is the lover of every c who is the benefactor of b.

So the crucial difference was between asserting something about
particulars (some, a few, not all) and generals (every, all, any).
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The Logic of Relatives (1870)

Peirce also defined the relation of

3. Hypotheticals: ≺ (class inclusion) is a relation between two
relative terms, L and B , L ≺ B , denoting that all lovers (of
anything or anyone) are benefactors (of that same thing).

We tend nowadays to use the arrow ϕ→ ψ, for a (material)
conditional between propositions.
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Universes of Discourse

We need something else still, namely the universe of discourse.
The idea and the term comes from De Morgan (1846):

Writers on logic, it is true, do not find elbow-room enough in
anything less than the whole universe of possible conceptions;
but the universe of a particular assertion or argument may be
limited in any matter expressed or understood.. . . By not
dwelling on this power of making what we may properly. . . call
the universe of a proposition, or of a name, matter of
expressive definition, all rules remaining the same, writers on
logic deprive themselves of much useful illustration.

According to Peirce, this date marked the birth of ‘exact logic’
(MS 450).
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Universes of Discourse

Peirce proposed

to use the term “universe” to denote that class of individuals
about which alone the whole discourse is understood to run.
The universe, therefore, in this sense, as in Mr. De Morgan’s,
is different on different occasions. (CP 3.65, 1870)

Besides individuals, Peirce had collections, qualities, modalities etc.
in the universes of discourse.

He made the use of such universes a thoroughly logical issue, and
applied it to his logic of relatives.

A logical universe is, no doubt, a collection of logical subjects,
but not necessarily of meta-physical Subjects, or ‘substances’.
(CP 4.546, 1906)
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1885, Quantifiers

Let a1, a2, a3, . . . be all individual objects of the given universe of
discourse, and let the value of term F for ai be

[F ]i = 1 if and only if ai is F , otherwise [F ]i = 0.

Likewise L, as applied to (ai , aj ), has values

[L]ij = 1 iff ai loves aj , and [L]ij = 0 otherwise.

Saying that some individual is F is true iff

Σi [F ]i > 0. (6)

Saying that every individual is F is true iff

Πi [F ]i > 0. (7)
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Quantifiers

Something loves something is now expressed by

ΣiΣj [L]ij > 0. (8)

Everything is a lover of something is expressed by

ΠiΣj [L]ij > 0. (9)

Arbitrarily iterating the two operators we can express very complex
things. . .
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Quantifiers

. . . just by applying strings of operators to matrices:

Any proposition whatever is equivalent to saying that some
complexus of aggregates [sums] and products of numerical
coefficients is greater than zero. Thus,

ΣiΣj Lij > 0 (10)

means that something is a lover of something; and

Πi Σj Lij > 0 (11)

means that everything is a lover of something. (CP 3.351)

This has a snag, however. . .
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Quantifiers

For the universes of discourse may well be uncountable. Thus
operators should not be simply sums and products of objects:

In order to render the notation as iconical as possible we may
use Σ for some, suggesting a sum [disjunction], and Π for all,
suggesting a product [conjunction].. . . It is to be remarked that
Σixi and Πixi are only similar to a sum and product; they are
not strictly of that nature, because the individuals of the
universe may be innumerable. (CP 3.393, 1885)

◮ Sums not well-defined for uncountable pairs of indices
◮ First-order logic doesn’t differentiate countable from

uncountable universes (cf. Löwenheim 1915).

[The assimilation of quantifying operators and infinitely long sequences of

connectives was later said by Wittgenstein to have been the biggest

mistake he made in the Tractatus.]

Ahti-Veikko Pietarinen Peirce’s Development of the Quantification Theory



The Development of Quantifiers
The Indexical, Symbolic, Iconic

The Algebraic Calculus of Relations (1867–)
The Emergence of Quantification Theory (1885)

Quantifiers

Accordingly, Peirce simplified the notation:

◮ Σi Fi (Something, i , is F )

◮ Πi Fi (Everything, i , is F )

◮ ΠiΣj Lij (Everybody, i , loves somebody, j)

◮ . . .

These are the quantifiers proper, in the Peano notation

◮ ∃x F (x), the ‘existential’ quantifier

◮ ∀x F (x), the universal quantifier

◮ ∀x∃y L(x , y)

◮ . . .
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Quantifiers

Operations on relations are thus defined as follows:

◮ Relative product: (LB)ik ::= Σj (Li jBjk) (is a lover of a
benefactor of)

◮ Relative sum: (L † B)ik ::= Πj (Li j + Bjk) (is a lover of every
benefactor of)

In the contemporary notation, these are

◮ ∃y (L(x , y) ∧ B(y , z)) (There exists/Someone, y , is such
that. . . )

◮ ∀y (L(x , y) ∨ B(y , z)) (For all y ; Anything, y , is such that. . . )

Thus emerged first-order logic!
(“First-intentional logic of relatives”).
(Note the free indices/variables and the prenex normal form.)
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First vs. Second-intentional Logic

Peirce differentiated between quantifying individual objects
(“first-intentional”) and quantifying relations
(“second-intentional” logic).

For example, the identity relation Iij is defined by the second-order
formula

Iij ::= ΠX ((XiXj) + (X c
i X c

j )). (12)

This is Leibniz’ Principle of the Identity of Indiscernibles.

First intentions are those concepts which are derived by
comparing percepts, such as ordinary concepts of classes,
relations, etc. Second intentions are those which are formed
by observing and comparing first intentions. (CP 2.548)
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1885: Quantification based on Indices

◮ Relatives have indices i , j , k, . . .
◮ Indices ‘refer directly’; we can recognise the actual universe of

discourse only if we can pick its objects directly:

The [indexical] sign signifies its object solely by virtue of being
really connected with it. . . . the subscript numbers in algebra
distinguish one value from another without saying what those values
are. (3.361, Peirce 1885: 164)

◮ Objects are named by indices
◮ Individual variables of quantifiers are indices
◮ Linguistic significance of quantification (algebra  language):

The index asserts nothing; it only says “There!” It takes hold of our
eyes, as it were, and forcibly directs them to a particular object, and
there it stops. Demonstrative and relative pronouns are nearly pure
indices, because they denote things without describing them.(3.361)
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1885: Substitutional interpretation

1885 presupposes a substitutional interpretation of quantification:
Directly referring indices connect language with the objects of the
domains.
However, substitutional interpretation is bound to fail:

1. “suggesting a sum. . . suggesting a product”: uncountability

2. Different quantifier orderings have different substitutional equations:
(13) is valid but (14) “does not hold when the i and j are not
separated” (p. 231):

Σi Πj xij ≻ ΠjΣi xij (13)

ΠjΣi xij ≻ Σi Πj xij (14)

=⇒ Inferential relationships presuppose certain quantifier orderings,
which are presupposed by the substitutional equations

3. No special class of substitution instances available in language.

=⇒ Quantifiers are not indexical signs after all.
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Post-1885: Objectual Interpretation

So Peirce gives up ‘logic’, but he does not give up ‘semantics’.
◮ Variables do not refer directly:

[Π and Σ] show whether the individuals are to be selected
universally or existentially, that is, by the interpreter or by the
utterer. (MS L 107: 8, 1905).
In the sentence “Every man dies,” “Every man” implies that the
interpreter is at liberty to pick out a man and consider the
proposition as applying to him. (CP 5.542, c.1902).

◮ Logical constants interpreted by habits (strategies):
◮ An objectual, game-theoretic interpretation
◮ Normative logic based on ‘commitment rules’ concerning the

truth at terminal points of plays of the games
◮ Variable–individual connections mediated by “habits” in the

“quasi-minds” of the utterer and the interpreter
◮ Habits connect language with the individuals of domains.

=⇒ Logical constants must be symbols.
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The Iconic Turn, 1895–

The third transition:

◮ Logical constants are icons (‘express their own meaning’)

◮ Notational unification for logical constants (Logic of
Existential Graphs)

◮ Semantics by habits  objectual interpretation preserved

◮ Continuous domains
◮ Substitutional interpretation fails
◮ Frege–Russell thesis fails
◮ Inferentialism fails (cannot get the TONK)

◮ Higher-dimensional algebras?
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Conclusions

Summarising, the Theory of Quantification (1885) emerged out of

◮ Developments on the algebraic calculus of relatives (1870)
grounded in Boolean algebra and De Morgan’s idea of
universes of discourse.

Why existential quantification?

◮ Universal assertions every, all, any, used to denote
non-existence of exceptions in the universe of discourse.
Hence, particular assertions evolved into existential quantifiers
by way of duality considerations:

◮ The meaning of a relative sum: there is a relation (a, b) in
some universes such that no exceptions to that relation may
exist.

◮ So a particular quantifier would better denote existence.
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Conclusions

1. Beginning 1885, Peirce discontinues development of the
quantification theory. Why?

◮ He sees that the substitutional interpretation ekes out logic?
◮ Proper names not ‘rigid designators’?

2. Logic is formal semeiotic.
3. The wider goals:

I even hope that what I have done may prove a first step toward the
resolution of one of the main problems of logic, that of producing a
method for the discovery of methods in mathematics. (1885: 166).

The calculus of the new logic, which is applicable to everything, will
certainly be applied to settle certain logical questions of extreme
difficulty relating to the foundations of mathematics. Whether or
not it can lead to any method of discovering methods in
mathematics it is difficult to say. Such a thing is conceivable.
(3.454, Review of Schröder, 1896)

=⇒ Diagrammatism. . .
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Conclusions

Peirce (with O.H. Mitchell) and Frege invented quantifiers as
variable-binding operators independently, Frege in 1879
(Begriffsschrift) and Peirce in 1883-5 (Studies in Logic, Logic of
Relatives, improved in the 1885 paper).
[Peirce led the Metaphysical Club at the Johns Hopkins beginning
1879 so the year 1879 may indeed be commemorated. . . ]

◮ But unlike Frege, quantification in the logic of relatives is over some
freely chosen domain of objects of discourse, not over the ‘absolute
totality’ of all objects. Thus Peirce initiated the model-theoretic
idea of isolating well-defined parts of ‘the world’ against which to
evaluate truth of formulas (‘true in a model’).

◮ Peirce did not, unlike Frege, define inductively the wffs of a formal
language. All the definitions were explicit.
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Conclusions

◮ Everyone adopted Peirce’s (Π,Σ) or Peano’s (∀,∃) notation
for quantifiers until about 1910, when Russell decided to
promote Frege’s cumbersome alternative, which others found
incomprehensible.

◮ Russell changed the term ‘Peirce–Peano logic’, already known
to refer to first-order logic, to ‘Peano–Frege logic’, later to be
called the ‘Frege–Russell’ logic. . .

◮ Much later, in 1946, Russell confessed, “I am, I confess to my
shame, an illustration of the undue neglect from which Peirce
has suffered in Europe. . . ”.
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Part I

Lecture 3: Some Logical Developments
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Propositional Logic

In the same 1885 paper, Peirce applied the concept of truth-values
to show that (quantifier-free) formulas are valid (necessarily, i.e.
logically true). He also delineates a propositional subsystem of
first-order logic.

To find whether a formula is necessarily true substitute f
[falsum] and v [verum] for the letters and see whether it can be
supposed false by any such assignment of values. (CP 3.387)

Since validity of ϕ is truth in all interpretations (assignments of
values to atomic propositions of ϕ), one can show that ϕ is valid
by assuming that ϕ is false and show that this leads to a
contradiction (Semantic Tableaux method, Hintikka & Beth 1955).
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Standard Truth Tables

Peirce introduced these in 1880.

∧ v f

v v f
f f f

(conjunction, ϕ ∧ ψ)

∨ v f

v v v
f v f

(disjunction, ϕ ∨ ψ)

¬

v f
f v

(negation, ¬ϕ)

Since P → Q is equivalent to ¬P ∨ Q, it is true if P = f or
Q = v , and false only if P = v and Q = f .
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Validity (1885)

For example, to prove the validity of

(P → Q) → ((Q → R) → (P → R)), (15)

assume (15) is false, and show a derivation of a contradiction:
(1) (P → Q) → ((Q → R) → (P → R)) = f
(2) (P → Q) = v (from 1)
(3) ((Q → R) → (P → R)) = f (from 1)
(4) (Q → R) = v (from 3)
(5) (P → R) = f (from 3)
(6) P = v (from 5)
(7) R = f (from 5)
(8) (v → Q) = v (from 2 and 6)
(9) (Q → f ) = v (from 4 and 7)
(10) Q = v (from 8)
(11) Q = f (from 9)

So there is no ‘state of things’ in which (15) would be false, so it
must be logically true.
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Logical NAND and NOR Operators (1880)

These are two-place connectives with a special property: they
suffice alone to characterise a truth-functionally complete system
of propositional logic (= all other connectives can be defined by
their means).

Peirce’s Arrow (NOR, from ‘not or’): P ↓ Q, is true iff ¬(P ∨ Q)
is true. (P ↓ Q: neither P nor Q).

↓ v f

v f f
f f v





∨ v f

v v v
f v f





¬P ::= P ↓ P
P ∨ Q ::= (P ↓ Q) ↓ (P ↓ Q)
P ∧ Q ::= (P ↓ P) ↓ (Q ↓ Q)
P → Q ::= ((P ↓ Q) ↓ Q) ↓ ((P ↓ Q) ↓ Q).
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Logical NAND and NOR Operators (1880)

Sheffer Stroke (NAND, from ‘not and’): in symbols P | Q, is true
iff ¬(P ∧ Q) is true.

| v f

v f v
f v v





∧ v f

v v f
f f f





¬P ::= P | P
P ∧ Q ::= (P | Q) | (P | Q)
P ∨ Q ::= (P | P) | (Q | Q)
P → Q ::= (P | Q) | P .
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Logical NAND and NOR Operators (1880)

In 1886, Peirce suggested to Allan Marquand, who had designed
some mechanical logic machines for syllogistic reasoning, that

it is by no means hopeless to make a machine for really difficult
mathematical problems. But you would have to proceed step
by step. I think electricity would be the best thing to rely on.

He then showed how switching circuits can be connected serially
and in parallel, noting that these two configurations correspond to
multiplication (sum ∼ disjunction) and addition (product ∼
conjunction) in logic.

Nowadays circuits are typically composed out of NAND and NOR
operations. But it was not only until after Claude Shannon’s
(1937) suggestions that such a machine that Peirce proposed was
eventually constructed.
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The Origins

The invention of three-valued logic is typically attributed to Emil
Post and Jan  Lukasiewicz, both in 1920.

However, in the unpublished Logic Notebook (MS 339, 1909),
Peirce developed semantics for three-valued logic (“Triadic
Logic”).

These notes were first studies and published by Fisch & Turquette
in 1966.

Peirce’s purpose was to include within the study of logic also
propositions which are neither true (v, verum) nor false (f, falsum),
using truth tables. He termed them the limit propositions, denoted
by l .

Ahti-Veikko Pietarinen Peirce’s Development of the Quantification Theory



Later Phase (1885–)
Conclusions

Truth Tables (1885)
Three-Valued Logics (1909)

Peirce’s Triadic Logic

As noted in relation to the principle of excluded middle (Lecture
2), Peirce thought that there are some ‘limit’ propositions neither
true nor false:

[Triadic logic], though not rejecting entirely the Principle of
Excluded Middle, nevertheless recognizes that every
proposition, S is P, is either true, or false, or else S has a
lower mode of being such that it can neither be determinately
P, nor determinately not P, but is at the limit between P and
not P. (MS 339)

He defined several connectives that may realise that idea.
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Peirce’s Triadic Logic

He proposed four one-place connectives:

ϕ ϕ̄ ϕ̄o ϕ̀ ϕ́

v f l f l
l l l v f
f v l l v

¬

v f
f v

(‘classical’ negation ¬ϕ)

◮ Connective ϕ̄ corresponds to strong negation ∼ϕ.

◮ Connective ϕ̄o corresponds to tertium function T (ϕ).

◮ Connectives ϕ̀ and ϕ́ correspond to Post negations −ϕ and
—ϕ.
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Peirce’s Triadic Logic

He proposed six two-place connectives:

Θ v l f

v v v v
l v l l
f v l f





∨ v f

v v v
f v f





Like disjunction ∨, but in case one or both of the ‘juncts’ being
indeterminate and the other false, the proposition is indeterminate.

Z v l f

v v l f
l l l f
f f f f





∧ v f

v v f
f f f





Like conjunction ∧, but in case one or both of the ‘juncts’ being
indeterminate and the other true, the proposition is indeterminate.
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Peirce’s Triadic Logic

Y v l f

v v l v
l l l l
f v l f





∨ v f

v v v
f v f





Like disjunction, but in case one or both of the ‘juncts’ being
indeterminate the proposition is indeterminate.

Ω v l f

v v l f
l l l l
f f l f





∧ v f

v v f
f f f





Like conjunction, but in case one or both of the ‘juncts’ being
indeterminate the proposition is indeterminate.
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Peirce’s Triadic Logic

Φ v l f

v v v v
l v l f
f v f f





∨ v f

v v v
f v f





Like disjunction, but the proposition is indeterminate only if both
‘juncts’ are indeterminate. Elsewhere indeterminacy is irrelevant.

Ψ v l f

v v v f
l v l f
f f f f





∧ v f

v v f
f f f





Like conjunction, but the proposition is indeterminate only if both
‘juncts’ are indeterminate. Elsewhere indeterminacy is irrelevant.

‘Logic of ordinary conversation’.
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Later Phase (1885–)
Conclusions

Truth Tables (1885)
Three-Valued Logics (1909)

Peirce’s Triadic Logic

Peirce thus rejected the Principle of Bivalence (PB), according to
which for every proposition ϕ, if ϕ is not true then ϕ is false, and
if ϕ is not false then ϕ is true.

The propositions to which the PB does not apply are those that lie
in the ‘narrow boundary area’ between true and false.

By taking suitable two-connective systems, say those of {Ψ,́ } or
{Z,̀ }, we have a functionally complete set of connectives.
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Later Phase (1885–)
Conclusions

Conclusions

It is commonly held that Peirce made two contributions to logic
that were his most important ones:

1. The Algebraic Logic of Relations, and

2. The Theory of Quantification, stimulated by the developments
in the algebraic theory.

These emerged during the ‘first phase’ (1870–1885), so we should
add from the ‘later phase’ (1909) at least his

3. Triadic Logic.

In between, there was ample time for yet another major
contribution, namely his theory of

4. Diagrammatic Logics (1895–).

Peirce himself though that to have been his “chef d’oeuvre” in
logic. We turn to that in the couple of next lectures.
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Later Phase (1885–)
Conclusions

Conclusions

1. The general significance of these logical innovations was that
they marked the milestones in the development of the
model-theoretic and semantic traditions in logic.

2. A founder of modern logic in giving us truth-tables, proof
methods, first-order logic, and a lot more.

3. Did not rest content with having only propositions that are
either true or false, as some indeterminate ones could be
neither.
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Existential Graphs
The Alpha Part

Part II

Lecture 4: Existential Graphs, System Alpha
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Existential Graphs
The Alpha Part

Some General Principles

Peirce’s Comments

I do not think I ever reflect in words: I employ visual
diagrams, firstly, because this way of thinking is my
natural language of self-communion, and secondly,
because I am convinced that it is the best system for
the purpose. (MS 619, 1909).

Peirce’s goal was a logical analysis of thought and reasoning that is
rigorous and valid also when symbolic expressions fall short of
fulfilling that purpose.

There are countless Objects of consciousness that words cannot
express; such as the feelings a symphony inspires or that which is in
the soul of a furiously angry man in [the] presence of his enemy.
(MS 499, 1906).

No one has invented logical diagrams for feelings, but Peirce
strongly believed in their plausibility.
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Existential Graphs
The Alpha Part

Some General Principles

“Moving Pictures of Thought”

According to Peirce, graphical representation of natural language
puts before us

◮ “moving pictures of thought” (CP 4.11)

◮ “a moving picture of the action of the mind in thought” (MS
298: 1)

◮ “a portraiture of Thought”.

The precise vehicle is the iconic logic of diagrams, which will

◮ “furnish a moving picture of the intellect” (MS 298: 10) and
provides a “system for diagrammatizing intellectual cognition”
(MS 292: 41).
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Existential Graphs
The Alpha Part

Some General Principles

The Turn to the Iconic

Mathematics is iconic:
Logic may be defined as the science of the laws of the stable
establishment of beliefs. Then, exact logic will be that doctrine of
the conditions of establishment of stable belief which rests upon
perfectly undoubted observations and upon mathematical, that is,
upon diagrammatical, or, iconic, thought. (CP 3.429, 1896)

What is iconic thought?

We form in the imagination some sort of diagrammatic, that is,
iconic, representation of the facts, as skeletonized as possible. The
impression of the present writer is that with ordinary persons this is
always a visual image, or mixed visual and muscular; but this is an
opinion not founded on any systematic examination. If visual, it will
either be geometrical, that is, such that familiar spatial relations
stand for the relations asserted in the premisses, or it will be
algebraical, where the relations are expressed by objects which are
imagined to be subject to certain rules, whether conventional or
experiential. (CP 2.778, 1901).Ahti-Veikko Pietarinen Peirce’s Development of the Quantification Theory



Existential Graphs
The Alpha Part

Some General Principles

Icon, Index, Symbol

According to Peirce, three kinds of signs are necessary in logic.

The first is the diagrammatic sign or icon, which exhibits a
similarity or analogy to the subject of discourse; the second is the
index, which like a pronoun demonstrative or relative, forces the
attention to the particular object intended without describing it; the
third [or symbol] is the general name or description which signifies
its object by means of an association of ideas or habitual connection
between the name and the character signified. (CP 1.369)

Iconicity comes in many guises:

Every picture (however conventional its method) is essentially a
representation of that [iconic] kind. So is every diagram, even
although there be no sensuous resemblance between it and its
object, but only an analogy between the relations of the parts of
each. (CP 2.279).
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Existential Graphs
The Alpha Part

Some General Principles

Diagrammatic Logic

What is essential here?

◮ Iconic representations: denote things represented by likeness,
semblance, analogy (graphs, diagrams, models, sets of
sentences,. . . ).

◮ May be abstract, structural, intellectual likeness
(‘true-in-a-model’, (homo/auto)morphisms,
structure-preserving maps,. . . )

◮ Modern incarnation: Conceptual Graphs (CG) in Computer
Science & AI

◮ The original formulation was in terms of the very expressive
system of Existential Graphs (EGs, 1896).
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Existential Graphs
The Alpha Part

Some General Principles

Image, Diagram, Metaphor

A Diagram is a [sign] which is predominantly an icon of
relations and is aided to be so by conventions. Indices are also
more or less used. (MS 492: 22).

A diagram should be “as iconic as possible” in order to represent
“visible relations” (MS 492: 22). Nowadays there are the
heterogeneous logics that are not fully iconic.

Not all iconicity is diagrams, however. Iconic signs (hypoicons) fall
into three classes:

Those which partake of simple qualities, or First Firstnesses, are
images; those which represent the relations, mainly dyadic, or so
regarded, of the parts of one thing by analogous relations in their
own parts, are diagrams; those which represent the representative
character of a representamen by representing a parallelism in
something else, are metaphors. (EP 2:273, 1903).

So iconic logic should really embody also images and metaphors.Ahti-Veikko Pietarinen Peirce’s Development of the Quantification Theory



Existential Graphs
The Alpha Part

Some General Principles

Graph, Logical Graph, Existential Graph

A graph is a superficial diagram composed of the sheet [Sheet of
Assertion] upon which it is written or drawn, of spots or their
equivalents, of lines of connection, and (if need be) of enclosures.
The type, which it is supposed more or less to resemble, is the
structural formula of the chemist.

A logical graph is a graph representing logical relations iconically,
so as to be an aid to logical analysis.

An existential graph is a logical graph governed by a system of
representation founded upon the idea that the sheet upon which it
is written, as well as every portion of that sheet, represents one
recognized universe, real or fictive, and that every graph drawn on
that sheet, and not cut off from the main body of it by an enclosure,
represents some fact existing in that universe, and represents it
independently of the representation of another such fact by any
other graph written upon another part of the sheet, these graphs,
however, forming one composite graph. (CP 4.419–21).
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Existential Graphs
The Alpha Part

Some General Principles

Schematically:

idea
⇑

Vorstellung
⇑

representation
⇑

Icon ⇐ Index ⇐ Symbol
⇑

Image ⇐ Diagram ⇐ Metaphor
⇑ ⇑ ⇑
? Graph ?

⇑
Logical Graph

⇑
Existential Graph (Alpha, Beta, Gamma)

I extend logic to
embrace all the
necessary princi-
ples of semeiotic,
and I recognize
a logic of icons,
and a logic of in-
dices, as well as a
logic of symbols.
(CP 4.9, 1906).
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Existential Graphs
The Alpha Part

Some General Principles

Alpha, Beta, Gamma

1. Alpha Graphs ∼ propositional logic
Cat and dog are on a mat.

2. Beta Graphs ∼ predicate logic
Every man is mortal.

3. Gamma Graphs ∼

3.1 Modal logic;
It is possible that it rains.

3.2 Higher-order logic;
Aristotle has all the virtues of a philosopher.

3.3 Metagraphs;
‘You are a good goalkeeper’ is much to be said.

3.4 Non-declaratives;
interrogatives, imperatives, emotions, interpretation of
music. . .
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Alpha Graphs

Definition
The set of Alpha Graphs Gα is the smallest set of satisfying:

1. Sheet of Assertion (SA):
G1

∈ Gα.

2. Closure under juxtaposition:

If P1 ∈ Gα, P2 ∈ Gα . . . Pn ∈ Gα, then
P1 . . .Pn

∈ Gα.

3. Closure under cuts:

If P1 ∈ Gα, then
P1 ∈ Gα.

Remark

◮ Cuts may not overlap.

◮ Juxtaposition is commutative and associative.
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Alpha Graphs

EGs are scribed on a surface.

1. Sheet of Assertion

⊤ (verum)

2. Juxtaposition ∼
conjunction

Pear is ripe

A dog stumbles over a quick fox

p ∧ q

3. Cut ∼ negation

You are cautious ¬p

¬(¬p ∧ ¬q) = p ∨ q

Pear is ripe

A dog stumbles over a quick fox

p q

¬(p ∧ ¬q) = ¬p ∨ q = p → q

(the scroll)

¬⊤ = ⊥ (falsum)
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Alpha Graphs

Definition (Area)

Space within the cut without the cut is the area of the cut.

Definition (Enclosure)

A cut, its area and everything in that area comprise the enclosure
of the cut.

Remark

1. Area is not part of the SA.

2. Area is not a graph.

3. Cut is not a graph.

4. Enclosure is a graph.
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Alpha Graphs

Definition (Positive and negative areas)

1.a Any graph P ∈ Gα not enclosed by any cut or enclosed by an
even number of cuts is evenly enclosed.

b Any graph P ∈ Gα enclosed by an odd number of cuts is
oddly enclosed.

2.a Area on which an evenly enclosed graph rests is positive.

b Area on which an oddly enclosed graph rests is negative.

Remark
The union of evenly and oddly enclosed graphs of any P ∈ Gα

comprise the set of all subgraphs of P .
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Alpha Graphs

Definition (Nest)

◮ A linearly ordered finite sequence of areas from the SA to the
areas of cuts of increasing depth makes a nest.

◮ A nest terminating on a cut-free area is a maximal nest.

A

B

C

D

E

F

G

H
I

J

1. One of 5 areas, or 4 cuts A-B-C-E-F

Three of 4 areas or 3 cuts each:

2. A-B-C-D

3. A-B-H-I

4. A-B-H-J

5. One of 3 areas, or 2 cuts, A-B-G.
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

The Sheet of Assertion

In Peirce’s own terms (‘Conventions I–VI’ (I–III alpha, IV–VI
beta).

Convention No. I: The Sheet of Assertion (SA) is

considered as representing the universe of discourse, and as
asserting whatever is taken for granted between the graphist
[utterer] and the interpreter [grapheus] to be true of that
universe. The sheet of assertion is, therefore, a graph. (CP
4.396).

SA is

a surface upon which the utterer and interpreter will, by
force of a voluntarily and actually contracted habit, recognize
that whatever is scribed upon it and is interpretable as an
assertion is to be recognized as an assertion, although it may
refer to a mere idea as its subject.

The Graphist and the Grapheus pertain to the semantics of EGs,Ahti-Veikko Pietarinen Peirce’s Development of the Quantification Theory



Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Entire and Partial Graphs (Juxtaposition)

Convention No. II: Entire and Partial Graphs:

The graph which consists of all the graphs on the sheet of
assertion, or which consists of all that are on any one area
severed from the sheet, shall be termed the entire graph of
the sheet of assertion or of that area, as the case may be. Any
part of the entire graph which is itself a graph shall be termed
a partial graph of the sheet or of the area on which it is. (CP
4.398).

Any two partial graphs of an entire graph express juxtaposition, in
other words (commutative and associative) conjunction between
them.

Ahti-Veikko Pietarinen Peirce’s Development of the Quantification Theory



Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Cuts

Convention No. III: Cuts:
By a Cut shall be understood to mean a self-returning linear separation
(naturally represented by a fine-drawn or peculiarly colored line) which severs all
that it encloses from the sheet of assertion on which it stands itself, or from any
other area on which it stands itself.

— The whole space within the cut (but not comprising the cut itself) shall be
termed the area of the cut. Though the area of the cut is no part of the sheet of
assertion, yet the cut together with its area and all that is on it, conceived as so
severed from the sheet, shall, under the name of the enclosure of the cut, be
considered as on the sheet of assertion or as on such other area as the cut may
stand upon.

— Two cuts cannot intersect one another, but a cut may exist on any area
whatever. Any graph which is unenclosed or is enclosed within an even number
of cuts shall be said to be evenly enclosed; and any graph which is within an
odd number of cuts shall be said to be oddly enclosed.

— A cut is not a graph; but an enclosure is a graph. The sheet or other area on
which a cut stands shall be called the place of the cut. (CP 4.399).
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Scrolls

A special case of cuts is a scroll:

A pair of cuts, one within the other but not within any other
cut that that other is not within, shall be called a scroll. The
outer cut of the pair shall be called the outloop, the inner cut
the inloop, of the scroll. The area of the inloop shall be
termed the inner close of the scroll; the area of the outloop,
excluding the enclosure of the inloop (and not merely its area),
shall be termed the outer close of the scroll. (CP 4.400).

The scroll is the iconic counterpart of material implication.
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Proofs

Five rules of transformation:

1. Add/remove double cuts:

P PQ Q. . . . . .⇐⇒

2. Insertion: Any P ∈ Gα may be added on negative area:

P . . .. . .. . . . . .=⇒
2k + 12k + 1

kk

3. Erasure: Any P ∈ Gα may be erased from positive area:

P . . .. . .. . . . . .=⇒
2k2k

kk
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Proofs

4. Iteration: Any copy of P may be scribed on the same area or
on the area in its nest (not part of P):

P
P

PP . . .. . .. . . . . .=⇒

5. Deiteration: Any copy of P may be removed from the same
area or from the area in its nest (not part of P):

P
P PP . . .. . .. . . . . .=⇒
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Existential Graphs
The Alpha Part

Definitions
Proofs: Transformation Rules

Next Topics

Lecture 5:

◮ Beta Graphs

◮ Semantics for EGs.

Lecture 5:

◮ Gamma Graphs (modalities etc.)

And the story continues with

◮ Continuity and

◮ Pragmaticism, and their relationships with EGs. . .

Ahti-Veikko Pietarinen Peirce’s Development of the Quantification Theory


	The Development of Quantifiers
	The Algebraic Calculus of Relations (1867–)
	The Emergence of Quantification Theory (1885)

	The Indexical, Symbolic, Iconic
	Substitutional interpretation, 1885
	Objectual interpretation, 1885–
	The Iconic Turn, 1895–
	Conclusions

	Lecture 3: Some Logical Developments
	Later Phase (1885–)
	Truth Tables (1885)
	Three-Valued Logics (1909)

	Conclusions

	Lecture 4: Existential Graphs, System Alpha
	Existential Graphs
	Some General Principles

	The Alpha Part
	Definitions
	Proofs: Transformation Rules



